Covariance
Description:
- To find the βcorrelationβ between 2 variables, and Correlation is the standard value to easier understood
- If X and Y are independent, then their covariance, Cov(X,Y)=0
- But Cov(X,Y)=0 doesnβt mean that they are independent
- Cov(X,Y)=E[(XβE[X])(YβE[Y])]=E[XY]βE[X]E[Y]
Propositions:
- Cov(X,Y)=Cov(Y,X)
- Cov(X,X)=Var(X)
- Cov(aX,Y)=aCov(X,Y)
- Cov(βX,Y)=βCov(X,Y)
- Cov(i=1βnβXiβ,j=1βmβYjβ)=i=1βnβj=1βmβCov(Xiβ,Yjβ)
- If Yjβ=Xjβ,j=1,...,n
- Var(i=1βnβXiβ)=i=1βnβVar(Xiβ)+iξ =jββCov(Xiβ,Xjβ)
=i=1βnβVar(Xiβ)+2i<jββCov(Xiβ,Xjβ)
- If Xiβ,...,Xnβ are pairwise independent, then Var(i=1βnβXiβ)=i=1βnβVar(Xiβ)