Joint probability density function
Description:
PDF for Jointly distributed random variable
X and Y are jointly continous for all continuous random variables, having the property that for every set C of pairs, if there exists a joint probability density function f ( x , y ) that P {( X , Y ) β C } = β« β« ( x , y β C ) β f ( x , y ) Β d x Β d y
Where f ( x , y ) is the probability of selecting both of them
Defining C = {( x , y ) : x β A , y β B }
Then P { X β A , Y β B } = β« B β β« A β f ( x , y ) Β d x Β d y
Equivalently F ( a , b ) = P { X β ( β β , a ] , Y β ( β β , b ]} = β« β β b β β« β β a β f ( x , y ) Β d x d y
f ( a , b ) = β a β b β 2 β F ( a , b )
If X and Y are jointly continuous, they are individually continuous, and their PDF is:
f X β ( x ) = β« β β β β f ( x , y ) d y
therefore. expectation of 1 variable is E [ X ] = β« x . f X β ( x ) d x = β« β« β β β β x . f ( x , y ) d y d x
f Y β ( y ) = β« β β β β f ( x , y ) d x
P ( X β A ) = P { X β A , Y β ( β β , β )} = β« A β β« β β β β f ( x , y ) d y d x = β« A β f X β ( x ) d x
For number of jointly random variable, n > 2
We can also define joint probability distributions for n random variables in exactly the same manner as we did for n = 2
Independent random variables
If the random variable X and Y for any two sets of real numbers A and B P { X β A , Y β B } = P { X β A } . P { Y β B }
P { X β€ A , Y β€ B } = P { X β€ a } . P { Y β€ b }
F ( a , b ) = F X β ( a ) . F Y β ( b ) Β Β Β Β forΒ allΒ a , b
2 continuous random variables are independent if and only if their JPDF can be expressed as: f X , Y β = h ( x ) . g ( y ) Β Β Β Β β β < x , y < β
Expectation of function of joint continuous variable: